Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759568

RESUMO

Acacia longifolia is one of the most aggressive invaders worldwide whose invasion is potentiated after a fire, a common perturbation in Mediterranean climates. As a legume, this species establishes symbioses with nitrogen-fixing bacteria inside root nodules; however, the overall microbial diversity is still unclear. In this study, we addressed root nodules' structure and biodiversity through histology and Next-Generation Sequencing, targeting 16S and 25S-28S rDNA genes for bacteria and fungi, respectively. We wanted to evaluate the effect of fire in root nodules from 1-year-old saplings, by comparing unburnt and burnt sites. We found that although having the same general structure, after a fire event, nodules had a higher number of infected cells and greater starch accumulation. Starch accumulated in uninfected cells can be a possible carbon source for the microbiota. Regarding diversity, Bradyrhizobium was dominant in both sites (ca. 77%), suggesting it is the preferential partner, followed by Tardiphaga (ca. 9%), a non-rhizobial Alphaproteobacteria, and Synechococcus, a cyanobacteria (ca. 5%). However, at the burnt site, additional N-fixing bacteria were included in the top 10 genera, highlighting the importance of this process. Major differences were found in the mycobiome, which was diverse in both sites and included genera mostly described as plant endophytes. Coniochaeta was dominant in nodules from the burnt site (69%), suggesting its role as a facilitator of symbiotic associations. We highlight the presence of a large bacterial and fungal community in nodules, suggesting nodulation is not restricted to nitrogen fixation. Thus, this microbiome can be involved in facilitating A. longifolia invasive success.

2.
PeerJ ; 10: e14270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405020

RESUMO

As climate change increasingly affects forest ecosystems, detailed understanding of major effects is important to anticipate their consequences under future climate scenarios. The Mediterranean region is a prominent climate change hotspot, and evergreen cork oak (Quercus suber L.) woodlands are particularly climatically sensitive due to cork (bark) harvesting. Cork oak's drought avoidance strategy is well-known and includes structural and physiological adaptations that maximise soil water uptake and transport and limit water use, potentially leading to reduced stem and cork growth. Trees' responses to cope with water-limited conditions have been extensively described based on cork-rings width and, more recently, on cork-rings density, in dendroecological studies. However, so far, tree functional attributes and physiological strategies, namely photosynthetic metabolism adjustments affecting cork formation, have never been addressed and/or integrated on these previous cork-rings-based studies. In this study, we address the relation between carbon and oxygen stable isotopes of cork rings and precipitation and temperature, in two distinct locations of southwestern Portugal-the (wetter) Tagus basin peneplain and the (drier) Grândola mountains. We aimed at assessing whether the two climatic factors affect cork-ring isotopic composition under contrasting conditions of water availability, and, therefore, if carbon and oxygen signatures in cork can reflect tree functional (physiological and structural) responses to stressful conditions, which might be aggravated by climate change. Our results indicate differences between the study areas. At the drier site, the stronger statistically significant negative cork δ 13C correlations were found with mean temperature, whereas strong positive cork δ 18O correlations were fewer and found only with precipitation. Moreover, at the wetter site, cork rings are enriched in 18O and depleted in 13C, indicating, respectively, shallow groundwater as the water source for physiological processes related with biosynthesis of non-photosynthetic secondary tissues, such as suberin, and a weak stomatal regulation under high water availability, consistent with non-existent water availability constrains. In contrast, at the drier site, trees use water from deeper ground layers, depleted in 18O, and strongly regulate stomatal conductance under water stress, thus reducing photosynthetic carbon uptake and probably relying on stored carbon reserves for cork ring formation. These results suggest that although stable isotopes signatures in cork rings are not proxies for net growth, they may be (fairly) robust indicators of trees' physiological and structural adjustments to climate and environmental changes in Mediterranean environments.


Assuntos
Carbono , Quercus , Carbono/metabolismo , Isótopos de Oxigênio/análise , Isótopos de Carbono/análise , Ecossistema , Desidratação , Oxigênio/metabolismo , Árvores
3.
Plants (Basel) ; 11(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365319

RESUMO

Woody invasive species pose a big threat to ecosystems worldwide. Among them, Acacia longifolia is especially aggressive, fundamentally changing ecosystem structure through massive biomass input. This biomass is rarely harvested for usage; thus, these plants constitute a nuisance for stakeholders who invest time and money for control without monetary return. Simultaneously, there is an increased effort to valorise its biomass, e.g., for compost, growth substrate or as biofuel. However, to incentivise A. longifolia harvest and usage, stakeholders need to be able to estimate what can be obtained from management actions. Thus, the total biomass and its quality (C/N ratio) need to be predicted to perform cost-benefit analyses for usage and determine the level of invasion that has already occurred. Here, we report allometric biomass models for major biomass pools, as well as give an overview of biomass quality. Subsequently, we derive a simplified volume-based model (BM ~ 6.297 + 0.982 × Vol; BM = total dry biomass and Vol = plant volume), which can be applied to remote sensing data or with in situ manual measurements. This toolkit will help local stakeholders, forest managers or municipalities to predict the impact and valorisation potential of this invasive species and could ultimately encourage its management.

4.
Front Plant Sci ; 13: 841707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360314

RESUMO

The pinewood nematode (PWN), Bursaphelenchus xylophilus, responsible for the pine wilt disease (PWD), is a major threat to pine forests worldwide. Since forest mortality due to PWN might be exacerbated by climate, the concerns regarding PWD in the Mediterranean region are further emphasized by the projected scenarios of more drought events and higher temperatures. In this context, it is essential to better understand the pine species vulnerability to PWN under these conditions. To achieve that, physiological responses and wilting symptoms were monitored in artificially inoculated Pinus pinaster (P. pinaster), Pinus pinea (P. pinea), and Pinus radiata (P. radiata) saplings under controlled temperature (25/30°C) and water availability (watered/water stressed). The results obtained showed that the impact of PWN is species-dependent, being infected P. pinaster and P. radiata more prone to physiological and morphological damage than P. pinea. For the more susceptible species (P. pinaster and P. radiata), the presence of the nematode was the main driver of photosynthetic responses, regardless of their temperature or water regime conditions. Nevertheless, water potential was revealed to be highly affected by the synergy of PWN and the studied abiotic conditions, with higher temperatures (P. pinaster) or water limitation (P. radiata) increasing the impact of nematodes on trees' water status. Furthermore, water limitation had an influence on nematodes density and its allocation on trees' structures, with P. pinaster revealing the highest nematode abundance and inner dispersion. In inoculated P. pinea individuals, nematodes' population decreased significantly, emphasizing this species resistance to PWN. Our findings revealed a synergistic impact of PWN infection and stressful environmental conditions, particularly on the water status of P. pinaster and P. radiata, triggering disease symptoms and mortality of these species. Our results suggest that predicted drought conditions might facilitate proliferation and exacerbate the impact of PWN on these two species, through xylem cavitation, leading to strong changes in pine forests of the Mediterranean regions.

5.
Microorganisms ; 9(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34442641

RESUMO

(1) Background: the Miombo woodlands comprise the most important vegetation from southern Africa and are dominated by tree legumes with an ecology highly driven by fires. Here, we report on the characterization of bacterial communities from the rhizosphere of Brachystegia boehmii in different soil types from areas subjected to different regimes. (2) Methods: bacterial communities were identified through Illumina MiSeq sequencing (16S rRNA). Vigna unguiculata was used as a trap to capture nitrogen-fixing bacteria and culture-dependent methods in selective media were used to isolate plant growth promoting bacteria (PGPB). PGP traits were analysed and molecular taxonomy of the purified isolates was performed. (3) Results: Bacterial communities in the Miombo rhizosphere are highly diverse and driven by soil type and fire regime. Independent of the soil or fire regime, the functional diversity was high, and the different consortia maintained the general functions. A diverse pool of diazotrophs was isolated, and included symbiotic (e.g., Mesorhizobium sp., Neorhizobium galegae, Rhizobium sp., and Ensifer adhaerens), and non-symbiotic (e.g., Agrobacterium sp., Burkholderia sp., Cohnella sp., Microvirga sp., Pseudomonas sp., and Stenotrophomonas sp.) bacteria. Several isolates presented cumulative PGP traits. (4) Conclusions: Although the dynamics of bacterial communities from the Miombo rhizosphere is driven by fire, the maintenance of high levels of diversity and functions remain unchanged, constituting a source of promising bacteria in terms of plant-beneficial activities such as mobilization and acquisition of nutrients, mitigation of abiotic stress, and modulation of plant hormone levels.

6.
Ann Bot ; 128(2): 149-157, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33876193

RESUMO

BACKGROUND AND AIMS: Invasive species may undergo rapid evolution despite very limited standing genetic diversity. This so-called genetic paradox of biological invasions assumes that an invasive species has experienced (and survived) a genetic bottleneck and then underwent local adaptation in the new range. In this study, we test how often Australian acacias (genus Acacia), one of the world's most problematic invasive tree groups, have experienced genetic bottlenecks and inbreeding. METHODS: We collated genetic data from 51 different genetic studies on Acacia species to compare genetic diversity between native and invasive populations. These studies analysed 37 different Acacia species, with genetic data from the invasive ranges of 11 species, and data from the native range for 36 species (14 of these 36 species are known to be invasive somewhere in the world, and the other 22 are not known to be invasive). KEY RESULTS: Levels of genetic diversity are similar in native and invasive populations, and there is little evidence of invasive populations being extensively inbred. Levels of genetic diversity in native range populations also did not differ significantly between species that have and that do not have invasive populations. CONCLUSION: We attribute our findings to the impressive movement, introduction effort and human usage of Australian acacias around the world.


Assuntos
Acacia , Acacia/genética , Austrália , Variação Genética , Humanos , Endogamia , Espécies Introduzidas
8.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230969

RESUMO

It is often overlooked that even food production is linked to the ecology of plants and animals. Living organisms respond to environmental short-and long-term variability: acknowledging this may help in the ultimate goal of valorizing a territory/product. We investigated acorns of the two main Quercus species of the Portuguese Montado, a main feed of the renown black Iberian pig. We tested their responses to an aridity gradient by morphological parameters and isotopic signature. Q. rotundifolia and Q. suber acorns did not differ morphologically, even if a higher variability in all parameters was observed in acorns of Q. suber. According to the site-specific Aridity Index, correlations are indicative to higher weight and length only in Q. suber acorns from more arid sites. As for isotopic composition, there were no differences in nitrogen or carbon (δ15N and δ13C) between the two species. However, combining the samples and testing for association with the Aridity Index, we found that more arid sites lead to a 15N enrichment. This result, combined with the positive correlation between AI and acorns length, support the use of acorns as a tool, their isoscapes of nitrogen being a stepping stone for the provenance of the black Iberian pig.


Assuntos
Isótopos de Carbono/metabolismo , Isótopos de Nitrogênio/metabolismo , Quercus/química , Sementes/química , Sementes/metabolismo , Suínos/crescimento & desenvolvimento , Animais , Isótopos de Carbono/química , Ecologia , Isótopos de Nitrogênio/química , Portugal , Quercus/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Suínos/fisiologia
9.
Tree Physiol ; 39(8): 1329-1341, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100150

RESUMO

Tree ring synthesis is a key process in wood production; however, little is known of the origin and fate of the carbon involved. We used natural 13C abundance to investigate the carbon-use process for the ring development in a temperate deciduous (Quercus petraea (Matt.) Liebl.) and a Mediterranean evergreen (Quercus ilex L.) oak. The sapwood carbon reserves, phloem sucrose contents, stem respired CO2 efflux and their respective carbon isotope compositions (δ13C) were recorded over 1 year, in the native area of each species. The seasonal δ13C variation of the current year ring was determined in the total ring throughout the seasons, as well as in slices from the fully mature ring after the growth season (intra-ring pattern). Although the budburst dates of the two oaks were similar, the growth of Quercus ilex began 50 days later. Both species exhibited growth cessation during the hot and dry summer but only Q. ilex resumed in the autumn. In the deciduous oak, xylem starch storage showed clear variations during the radial growth. The intra-ring δ13C variations of the two species exhibited similar ranges, but contrasting patterns, with an early increase for Q. petraea. Comparison between δ13C of starch and total ring suggested that Q. petraea (but not Q. ilex) builds its rings using reserves during the first month of growth. Shifts in ring and soluble sugars δ13C suggested an interspecific difference in either the phloem unloading or the use of fresh assimilate inside the ring. A decrease in ring δ13C for both oaks between the end of the radial growth and the winter is attributed to a lignification of ring cell walls after stem increment. This study highlighted the differences in carbon-use during ring growth for evergreen and deciduous oaks, as well as the benefits of exploring the process using natural 13C abundance.


Assuntos
Quercus , Carbono , Estações do Ano , Árvores , Madeira
10.
Glob Chang Biol ; 24(10): 4894-4908, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030867

RESUMO

Predicted droughts and anthropogenic water use will increase groundwater lowering rates and intensify groundwater limitation, particularly for Mediterranean semi-arid ecosystems. These hydrological changes may be expected to elicit differential functional responses of vegetation either belowground or aboveground. Yet, our ability to predict the impacts of groundwater changes on these ecosystems is still poor. Thus, we sought to better understand the impact of falling water table on the physiology of woody vegetation. We specifically ask (a) how is woody vegetation ecophysiological performance affected by water table depth during the dry season? and (b) does the vegetation response to increasing depth to groundwater differ among water-use functional types? We examined a suite of physiological parameters and water-uptake depths of the dominant, functionally distinct woody vegetation along a water-table depth gradient in a Mediterranean semi-arid coastal ecosystem that is currently experiencing anthropogenic groundwater extraction pressure. We found that groundwater drawdown did negatively affect the ecophysiological performance of the woody vegetation. Across all studied environmental factors, depth to groundwater was the most important driver of ecophysiological adjustments. Plant functional types, independent of groundwater dependence, showed consistent declines in water content and generally reduced C and N acquisition with increasing depths to groundwater. Functional types showed distinct operating physiological ranges, but common physiological sensitivity to greater water table depth. Thus, although differences in water-source use exist, a physiological convergence appeared to happen among different functional types. These results strongly suggest that hydrological drought has an important impact on fundamental physiological processes, constraining the performance of woody vegetation under semi-arid conditions. By disentangling the functional responses and vulnerability of woody vegetation to groundwater limitation, our study establishes the basis for predicting the physiological responses of woody vegetation in semi-arid coastal ecosystems to groundwater drawdown.


Assuntos
Clima Desértico , Água Subterrânea , Fenômenos Fisiológicos Vegetais , Secas , Ecossistema , Humanos , Plantas/metabolismo , Água/metabolismo , Movimentos da Água
11.
Biol Rev Camb Philos Soc ; 93(3): 1421-1437, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29504240

RESUMO

The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions.


Assuntos
Jardinagem , Espécies Introduzidas , Plantas/classificação , Comércio , América do Norte , Dispersão Vegetal
12.
Front Plant Sci ; 9: 287, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559990

RESUMO

Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 µL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios.

13.
Environ Sci Pollut Res Int ; 24(36): 28065-28071, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28994014

RESUMO

The mechanisms of nitrogen (N) tolerance in lichens are not yet fully understood. Here, we investigated how the increase of chitin content is related with N excess at inter- and intra-specific levels, by using species with differing ecological N tolerances (the tolerant Xanthoria parietina and Parmotrema hypoleucinum and the sensitive Evernia prunastri and Usnea sp.) and thalli of X. parietina and P. hypoleucinum from sites with different availabilities of N of agricultural origin (livestock), as confirmed by lichen N content and δ15N. Nitrogen, chitin (N-containing compound), and ergosterol contents were measured in lichen thalli. Nitrogen and chitin contents were higher in tolerant species than those in sensitive ones (inter-specific level) and in thalli collected from the N-polluted site than in thalli from the clean site (intra-specific level). We suggest that chitin contributes to N stress tolerance in lichens, and that excess N can be partially stored as chitin (non-toxic form) in the cell walls of tolerant species.


Assuntos
Quitina/metabolismo , Líquens/metabolismo , Ascomicetos , Variação Biológica da População , Ergosterol/metabolismo , Nitrogênio/metabolismo
14.
Photosynth Res ; 128(1): 85-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26546444

RESUMO

The effects of dissolved inorganic carbon (DIC) availability on photosynthesis were studied in two estuarine intertidal microphytobenthos (MPB) communities and in the model diatom species Phaeodactylum tricornutum. Kinetics of DIC acquisition, measured with a liquid-phase oxygen electrode, showed higher K(1/2)(DIC) (0.31 mM) and Vm (7.78 nmol min(-1) µg (Chl a)(-1)) for MPB suspensions than for P. tricornutum (K(1/2)(DIC) = 0.23 mM; Vm = 4.64 nmol min(-1) µg (Chl a)(-1)), suggesting the predominance of species with lower affinity for DIC and higher photosynthetic capacity in the MPB. The net photosynthetic rate of the MPB suspensions reached saturation at a DIC concentration of 1-1.5 mM. This range was lower than the concentrations found in the interstitial water of the top 5-mm sediment layer, suggesting no limitation of photosynthesis by DIC in the MPB communities. Accordingly, carbon isotope discrimination revealed a moderate activity of CO2-concentrating mechanisms in the MPB. However, addition of NaHCO3 to intact MPB biofilms caused a significant increase in the relative maximum photosynthetic electron transport rate (rETR max) measured by imaging pulse-amplitude modulated chlorophyll a fluorescence. These results suggest local depletion of DIC at the photic layer of the sediment (the first few hundred µm), where MPB cells accumulate during diurnal low tides. This work provides the first direct experimental evidence of DIC limitation of photosynthesis in highly productive intertidal MPB communities.


Assuntos
Carbono/farmacocinética , Diatomáceas/fisiologia , Fotossíntese , Disponibilidade Biológica , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Clorofila/metabolismo , Clorofila A , Ecossistema , Transporte de Elétrons , Estuários , Portugal
15.
Glob Chang Biol ; 22(1): 415-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26363182

RESUMO

The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown for ca. 10 months at 25/20°C (day/night) and 380 or 700 µl CO2 l(-1) and then subjected to temperature increase (0.5°C day(-1) ) to 42/34°C. Leaf impacts related to stomatal traits, gas exchanges, C isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20, 31/25, 37/30 and 42/34°C. The results showed that (1) both species were remarkably heat tolerant up to 37/30°C, but at 42/34°C a threshold for irreversible nonstomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. (2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO2 ], (3) strongly mitigated the impact of temperature on both species, particularly at 42/34°C, modifying the response to supra-optimal temperatures, (4) promoted higher water-use efficiency under moderately higher temperature (31/25°C) and (5) did not provoke photosynthetic downregulation. Instead, enhancements in [CO2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios.


Assuntos
Dióxido de Carbono/metabolismo , Coffea/fisiologia , Temperatura Alta , Fotossíntese/fisiologia , Aclimatação , Mudança Climática , Transporte de Elétrons , Genótipo , Aquecimento Global , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Tilacoides/metabolismo , Água/metabolismo
16.
Environ Sci Technol ; 49(4): 2222-9, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25607592

RESUMO

Despite reductions in atmospheric sulfur (S) concentrations due to abatement policies in some countries, modeling the dispersion of this pollutant and disentangling anthropogenic sources from natural ones is still of great concern. Lichens have been used as biomonitors of the impacts of S for over 40 years, but their potential as source-tracers of specific sources, including natural ones, remains unexplored. In fact, few attempts have been made to try to distinguish and spatially model different sources of S using lichens. We have measured S concentrations and isotopic values in lichens within an industrial coastal region where different sources of S, natural and anthropogenic, interplay. We detected a prevailing influence of natural sea-originated S that mixed with anthropogenic sources of S. We were then able to disentangle the sources of S, by removing the ocean influence on S isotopic values, enabling us to model the impact of different anthropogenic sources on S deposition and highlighting the potential use of lichens to evaluate the weight of different types of anthropogenic sources.


Assuntos
Poluentes Atmosféricos/análise , Líquens/química , Enxofre/análise , Monitoramento Ambiental , Portugal
17.
Ambio ; 44(3): 178-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25037589

RESUMO

Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human-ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.


Assuntos
Biodiversidade , Ecossistema , Ciclo do Nitrogênio , Mudança Climática
18.
Environ Pollut ; 180: 330-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23768993

RESUMO

During the last decades, awareness regarding persistent organic pollutants (POPs), such dioxins and furans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs), has become a cutting-edge topic, due to their toxicity, bioaccumulation and persistency in the environment. Monitoring of PCDD/Fs and PAHs in air and water has proven to be insufficient to capture deposition and effects of these compounds in the biota. To overcome this limitation, environmental biomonitoring using lichens and aquatic mosses, have aroused as promising tools. The main aim of this work is to provide a review of: i) factors that influence the interception and accumulation of POPs by lichens; ii) how lichens and aquatic bryophytes can be used to track different pollution sources and; iii) how can these biomonitors contribute to environmental health studies. This review will allow designing a set of guidelines to be followed when using biomonitors to assess environmental POP pollution.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Poluentes Atmosféricos/análise , Briófitas/química , Guias como Assunto , Líquens/química , Poluentes da Água/análise
19.
Chemosphere ; 92(5): 626-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23668962

RESUMO

One of the main drawbacks of using lichens to monitor atmospheric PAHs has been reported as the inexistence of studies aiming to translate PAH values in lichens into the atmospheric equivalents ones, in order to use this information for regulatory purposes. In this work, PAH concentrations in lichens were compared with PAH concentrations measured in a conventional active sampler in an outdoor environment for a 9-month span. Significant positive correlations between HMW-PAHs, Σ16 EPA-PAHs, and BaP equivalent concentrations in lichens and those in air (TSP) were found. Concentrations of Σ16 EPA-PAHs in lichens and air showed a seasonal variation, with highest values during winter and lowest values during summer. Meteorological variables - temperature, atmospheric pressure, relative humidity, and wind speed - showed to significantly influence PAH concentrations in both lichens and air. Based on the significant linear correlations, equations for translating PAH concentrations measured in lichens into equivalent ones for air were proposed for the first time, allowing a broader use of lichens' information regarding PAHs in monitoring schemes and decision-making.


Assuntos
Poluentes Atmosféricos/análise , Ar/análise , Monitoramento Ambiental/métodos , Líquens/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/metabolismo , Calibragem , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
20.
J Toxicol Environ Health A ; 75(13-15): 819-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22788369

RESUMO

Polycyclic aromatic hydrocarbons (PAH) are toxic compounds that have been classified by the International Agency for Research on Cancer as probable or possible human carcinogens. Human exposure to PAH is usually assessed by considering data from a single air monitoring station as being representative of a large region; however, air pollution levels change on small spatial scales and thus also affect environmental exposure. The use of environmental biomonitors is a useful tool to assess the levels of PAH with high spatial resolution. The aims of this study were to (1) assess human exposure to PAH in a petrochemical region in Portugal, integrating data from environmental biomonitors (lichens), air, and soil in a regional area, and (2) determine the health risks associated with exposure to PAH with high spatial resolution. Bearing this in mind, benzo[a]pyrene (BaP) equivalent concentrations in samples of soil, air, and lichens collected in the study region were used to assess human exposure through different pathways, including inhalation of air and soil particles, ingestion of soil, and dermal contact with soil. Human health risk was calculated through the Incremental Lifetime Cancer Risk (ILCR). BaP equivalent concentrations found in the region ranged from 6.9 to 46.05 ng BaPeq/g in lichens, from 16.45 to 162.02 ng BaPeq/g in soils, and from 0.02 to 0.16 ng BaPeq/m³ in air, indicative of high variability in this regional area. Human exposure to PAH varied between 976 and 42,877 ng BaPeq/d. When considering all exposure pathways, ILCR values were between 10⁻4 and 10⁻³. Considering only inhalation, ILCR values were between 10⁻6 and 10⁻5. The main risk seemed to arise from soil (either ingestion or inhalation of resuspended soil particles). The high spatial resolution of our environmental data allowed for detection of critical exposure levels at unexpected sites. Our results identified important areas where health studies on local populations need to be focused, and where environmental levels of PAH need to be monitored over time in order to protect human health.


Assuntos
Poluição do Ar/efeitos adversos , Carcinógenos Ambientais/administração & dosagem , Exposição Ambiental , Monitoramento Ambiental , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/administração & dosagem , Adolescente , Adulto , Poluentes Atmosféricos/análise , Carcinógenos Ambientais/análise , Criança , Monitoramento Ambiental/métodos , Indústrias Extrativas e de Processamento , Humanos , Lactente , Exposição por Inalação , Líquens/efeitos dos fármacos , Líquens/crescimento & desenvolvimento , Material Particulado/análise , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Portugal , Medição de Risco , Absorção Cutânea , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...